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Abstract
An su(1, 1) dynamical algebra to describe the continuum part of the spectrum
for the modified Pöschl–Teller potential is proposed. The space associated
with this algebra is given in terms of a family of orthonormal functions

{
�σ

n

}
characterized by the parameter σ . This set is constructed from polynomials
which are orthogonal with respect to a weighting function corresponding
to a Pöschl–Teller ground state. An analysis of the associated algebra is
investigated in detail. The functions are identified with Pöschl–Teller-like
functions associated with different potential depths. We prove that by choosing
appropriately the parameter σ it is possible to decouple the discrete states of
a given parity from the continuum part of the spectrum. A discussion of the
matrix elements of the dipole function operator is also included.

PACS number: 03.65.−w

1. Introduction

The study of quantum systems from the point of view of symmetry has attracted attention since
the early days of quantum mechanics [1]. The family of solvable potentials is particularly
important since detailed analytical studies are possible [2]. Among the solvable systems,
the Pöschl–Teller (PT) potential [3, 4] has been widely analysed from different perspectives
[5–15]. This potential presents bound and scattering states, and both regions of the spectrum
have been studied. The PT potential, together with the Morse potential, represent the most
studied anharmonic potentials, both of them having in common their relation with the SO(2, 1)

and SU(2) groups [16]. The associated su(2) algebra constitutes a dynamical algebra for the
discrete part of the spectrum, which means that any variable can be expanded in terms of the
generators of the su(2) algebra, as long as we deal with the bound region of the spectrum
[16]. The so(2, 1) algebra, on the other hand, arises in scattering states [6] as well as in the
potential group approach, where wavefunctions associated with different potentials, but the
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same energy, are connected. Closely related with the Schrödinger method of factorization
[17, 18] is the supersymmetry approach, whose generalized operator method quickly yields
all the bound state energy eigenvalues, eigenfunctions as well as the scattering matrix [5].
Recently, in the framework of supersymmetric quantum mechanics extended to deal with
non-Hermitian Hamiltonians, a related PT complex potential with real spectra was derived
by a potential algebraic approach based upon the complex Lie algebra sl(2, C) [9–11]. Both
algebras so(2, 1) and sl(2, C), as well as su(1, 1), are isomorphic. In this work we shall
introduce the su(1, 1) algebra as the dynamical algebra of the PT potential associated with
both the discrete and continuum spectra.

The PT potential has been proved to be a suitable potential to deal with the out-of-plane
bending vibrations [19]. In a local mode description for molecular vibrational excitations an
anharmonic potential is associated with each internal degree of freedom [20–23]. A Morse
potential is associated for the stretches, while for the bendings harmonic potentials are usually
proposed, although either a Morse or PT potential may be used, depending of the symmetry of
the potential [24]. The potential associated with the out-of-plane local coordinate is symmetric,
a feature that suggests using a PT potential for its description. Although the Morse and PT
potentials are similar concerning the dynamical symmetry, from the technical point of view
they are quite different. While for the Morse potential closed analytic results for different
matrix elements have been obtained, more involved expressions are given for the PT potential.
In both cases, however, only the discrete part of the spectra is considered, neglecting the
continuum part of the space. For excitations in the high energy region of the spectrum near the
chemical threshold, a complete basis becomes compulsory, since eventually the dissociation
may take place.

Due to its importance, great attention has been paid to incorporate the continuum,
appropriately discretized, in the description of quantum mechanical systems [25–31].
Recently, the use of a transformed harmonic oscillator (THO) basis has been proposed to
describe the effect of the continuum by means of a discrete basis, which is determined by the
ground state of the system [32]. In this work we present an alternative to the THO basis to
establish a complete basis for the PT oscillator to describe both the discrete and the continuum
parts of the spectrum for the PT potential. We prove that an su(1, 1) algebra is the dynamical
algebra associated with the complete space and show that the functions of this basis correspond
to PT-like functions associated with different potential depths, a fact that establishes a link
with the potential approach.

In section 2 we present a summary of the bound state solutions for the PT potential,
making explicit the connection with the su(2) algebra. Section 3 is devoted to presenting the
complete basis set as well as the proof that its ladder operators constitute an su(1, 1) dynamical
algebra for the system. The matrix elements of the Hamiltonian are obtained in section 4.
In section 5 we present an algebraic interpretation of the basis, and discuss the relation with
supersymmetry. In section 6 we present model calculations for an operator which couples the
bound state to the continuum, as well as a discussion concerning the calculation of the dipole
moment matrix elements. Finally, in section 7 a summary and our conclusions are presented.

2. Bound eigenfunctions for the Pöschl–Teller potential

We start by reviewing the analytic and algebraic treatment of the bound solutions for the
modified Pöschl–Teller potential (MPT), which is given by [3]

V (x) = − D

cosh2(αx)
(1)
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where D > 0 corresponds to its depth, α is related to the range of the potential, and x is the
physical displacement variable which may correspond to the internal coordinate considered to
describe a molecular bending mode.

The solution of the Schrödinger equation associated with the potential (1) is given by
[33, 34]

�j
v (u) = Nj

v (1 − u2)
j−v

2 Cj+1/2−v
v (u) (2)

where Cλ
v (u) are the Gegenbauer polynomials and the normalization constant is given by

Nj
v =

√
αv!�[j − v + 1/2]

π1/2�[j − v] (2j − 2v + 1)v
(3)

where (a)n stands for a Pochhammer symbol [35]. The argument u is related with the physical
displacement coordinate x by u = tanh(αx). The index j is connected with the potential depth
through

j (j + 1) = 2µD

α2h̄2 . (4)

The number of quanta v takes the values 0, 1, 2, . . . , vmax and, together with j , gives the
energy

j − v =
√−2µE

α2h̄2 (5)

where µ is the reduced mass of the molecule. The corresponding energy spectrum is

Ev = −h̄ω(j − v)2 = −h̄2α2

2µ
(j − v)2. (6)

From the dissociation condition in (6)

j − v � 0 (7)

and consequently the expected maximum number of quanta is

vmax = [j ] (8)

where [j ] stands for the closest integer to j that is smaller than j .
It is possible to obtain an algebraic representation of the solutions (2) by introducing

creation b̂
†

and annihilation b̂ operators [14], which have the following action on the
functions (2)

b̂
†
�j

v (u) =
√

(v + 1)(1 − (v + 1)/(2j + 1))�
j

v+1(u) (9a)

b̂�j
v (u) =

√
v(1 − v/(2j + 1))�

j

v−1(u) (9b)

with the following definition

v̂�j
v (u) = v�j

v (u). (10)

It is clear that the operator v̂ is well defined as long as the action is given over the eigenfunction
space �

j
v (u). The operators {b†, b}, together with the number operator v̂, satisfy the

commutation relations

[b̂, b̂
†
] = 1 − 2v̂ + 1

(2j + 1)
[v̂, b̂†] = b̂

†
[v̂, b̂] = −b̂ (11)

which can be identified with the usual su(2) commutation relations by introducing the set of
transformations

{
b† = Ĵ−/

√
(2j + 1), b = Ĵ +/

√
(2j + 1), v̂ = j − Ĵ 0

}
, where Jµ satisfy the
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usual ‘angular momentum’ commutation relations [36]. The projection m is related with v

by [37]

m = v − j. (12)

From this relation we see that the ground state (v = 0) corresponds to m = −j . The
MPT functions (2) are then associated with one branch (in this case to m < 0) of the su(2)

representations. The su(2) group is the dynamical symmetry for the bound states for the MPT
potential and any dynamical variable can be expanded in terms of the generators

Gsu(2) = {b̂†
, b̂, v̂}. (13)

For a MPT potential with [j ] + 1 bound states, the functions (2) acquire in the algebraic space
the simple form∣∣�j

v

〉 = N j
v (b̂

†
)v

∣∣�j

0

〉
(14)

with normalization constant

N j
v =

√
(2j + 1)v

v!(2j − v + 1)v
. (15)

In the su(2) space the variable u, as well as the coordinate x and the momentum p, take the
form of a finite expansion in the parameter 1/

√
(2j + 1) involving all allowed powers of the

generators [15].

3. An orthonormal complete basis for the Pöschl–Teller potential

The bound solutions (2) do not form a complete set of states in the Hilbert space. A complete
set is obtained when the continuum part of the spectrum is taken into account. Instead of
considering the analytic solutions for the continuous part of the spectrum we shall introduce
a continuum discretization by means of a complete set of orthonormal functions. We propose
the following set of functions,

�σ
n (u) = Aσ

n (1 − u2)
σ
2 Cσ−1/2

n (u) n = 0, 1, 2, . . . (16)

characterized by the index σ , that has to be greater than zero to have a square normalizable
basis. Each election of σ defines a family of functions which form complete orthonormal
set Lσ 〈

�σ
n

∣∣�σ
m

〉 = δnm (17)

in the space L2[(−1, 1), du/(1 −u2)] (the square integrable functions on the (−1, 1) interval,
with respect to the measure du/(1 − u2)). This is trivially obtained remembering that the
Gegenbauer polynomials Cκ

n (x) are orthogonal in the interval (−1, 1) with respect to the
weighting function ω(x) = (1 − x2)κ−1/2. In principle, we can choose any possible σ to
describe the MPT states. The normalization constant in equation (16) is

Aσ
n =

√
αn!(σ + n − 1/2)[�(σ − 1/2)]2

π22−2σ �(2σ + n − 1)
. (18)

In figure 1 the first few basis wavefunctions for a PT potential with j = 4 are presented for the
election σ = 1 as a function of the dimensionless quantity αx. In the inset the PT potential is
plotted (energies are given in units of h̄2α2/µ). We shall show now that a particular election
of σ allows one to decouple the bound states of a given parity from the continuum part of the
spectrum.
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Figure 1. N = 6 basis for the Pöschl–Teller potential for the case σ = 1 (αx is dimensionless).
In the inset a Pöschl–Teller potential with j = 4 is shown (energy is given in units of h̄2α2/µ).

The MPT Hamiltonian can now be diagonalized in the basis (16) to generate both
the discrete and continuum parts of the spectrum. Although this task can be achieved in
configuration space [32], we shall follow an algebraic procedure similar to that followed in
the case of the Morse potential [38].

In accordance with the factorization method [17, 18], we proceed to obtain the ladder
operators for the orthonormalized basis. To this end we start by establishing the action of the
differential operator d

du
on the functions (16):

d

du
�σ

n (u) = Aσ
n

{
−σu(1 − u2)σ/2−1Cσ−1/2

n (u) + (1 − u2)σ/2 d

du
Cσ−1/2

n (u)

}
. (19)

Taking into account the recurrence relations [35]

(1 − u2)
d

du
Cλ

n(u) = −(n + 1)Cλ
n+1(u) + (2λ + n)uCλ

n(u) (20)

(n + 1)Cλ
n+1(u) = 2(λ + n)uCλ

n(u) − (2λ + n − 1)Cλ
n−1(u) (21)

and that the momentum in terms of the new variable u is given by p̂ = −ih̄α(1 − u2) d/du,
we can define the raising, lowering and number operators as

K̂+ =
[
− i

h̄α
p̂ + u(n̂ + σ − 1)

] √
n̂ + σ + 1/2

n̂ + σ − 1/2
(22a)

K̂− =
[ i

h̄α
p̂ + u(n̂ + σ)

] √
n̂ + σ − 3/2

n̂ + σ − 1/2
(22b)

K̂0 = n̂ + σ − 1/2 (22c)

with the following action on the basis wavefunctions (16),

K̂+�
σ
n (u) = k+�

σ
n+1(u) (23a)
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K̂−�σ
n (u) = k−�σ

n−1(u) (23b)

K̂0�
σ
n (u) = k0�

σ
n (u) (23c)

with

k̂+ =
√

(n + 1)(2σ + n − 1) (24a)

k− =
√

n(2σ + n − 2) (24b)

k0 = (n + σ − 1/2). (24c)

As we can see, the operator K̂− annihilates the ground state �σ
0 (y), as expected from a

step-down operator.
We now proceed to study the algebra associated with the operators K̂+ K̂− and K0. It is

straightforward to show that they satisfy the commutation relations

[K̂+, K̂−] = −2K̂0 [K̂0, K̂−] = −K̂− [K̂0, K̂+] = K̂+ (25)

which correspond to the su(1, 1) algebra [39]. We now proceed to identify the quantum
numbers {σ, n} according to their standard representation [40]. The latter is found by
examining the formulae for the su(1, 1) discrete series representation.

The SU(1, 1) group is noncompact [39]. Unlike the case of SU(2) all its unitary
irreducible representations are infinite dimensional, and can be classified into three different
kinds, the principal (continuous), discrete and supplementary series [40, 41]. In this work
we shall be concerned only with the discrete series since the basis we are considering is
discrete. The SU(1, 1) generators K̂±,0 satisfy the commutation relations (25) and the discrete
representations D+

κ of this group have the standard form

K̂+|κ, µ〉 =
√

(µ + κ)(µ − κ + 1)|κ, µ + 1〉 (26a)

K̂−|κ, µ〉 =
√

(µ − κ)(µ + κ − 1)|κ, µ − 1〉 (26b)

K̂0|κ, µ〉 = µ|κ, µ〉 (26c)

where µ can take the values

µ = κ, κ + 1, . . . (27)

for the Bargmann index κ , which characterizes the irreducible representations.
Since the generators (22) satisfy the su(1, 1) algebra, we need to establish the connection

between {κ, µ} and the quantum numbers {σ, n} in order to recover (26). This goal is
accomplished by the identification of µ with the eigenvalue of K̂0 in (22c):

µ = σ + n − 1/2 (28)

and

κ = σ − 1/2. (29)

Finally, the Casimir operator can be written as

Ĉ = K̂+K̂− − K̂0(K̂0 − 1) = K̂−K̂+ − K̂0(K̂0 + 1) (30)

with eigenvalues

Ĉ�σ
n (y) = −κ(κ − 1)�σ

n (y) = −[
σ(σ − 2) + 3

4

]
�σ

n (y). (31)
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Although the operators K̂± are not symmetrical, the unitary representation (26) assures
that K̂± = K̂

†
∓ through the matrix elements

〈�n±1|K̂±|�n〉 = 〈
K̂

†
±�n±1

∣∣�n

〉 = 〈K̂∓�n±1|�n〉.
The asymmetry, and consequently the normalization factors, seems to be necessary in order
to reproduce the standard unitary representation. Symmetric expressions for the raising and
lowering operators satisfying the su(1, 1) algebra, linear in the operator n̂, are possible, but
they do not lead to the representation (26). Such operators will be introduced in section 4.

We have thus established the algebra associated with the basis (16). These functions are
not eigenfunctions of the MPT Hamiltonian, but it is possible to express the Hamiltonian, as
well as any dynamical variable in terms of the algebra

Gsu(1,1) = {K̂+, K̂−, K̂0}. (32)

Consequently, the su(1, 1) algebra can be considered as a suitable dynamical algebra for the
MPT system in the space generated by the basis Lσ . In this algebraic space, the basis (16)
takes the simple form∣∣�σ

n

〉 = Gσ
n (K̂+)

n
∣∣�σ

0

〉
(33)

where the normalization constant is given by

Gσ
n =

√
1

n!(2σ)n
. (34)

We should stress the fact that the operator K̂+ in equation (22a) depends on the function over
which it acts: it is an n-dependent parameter which is well defined as long as the action is
carried out over the spaces (16). We now proceed to establish the Hamiltonian in the algebraic
space (32).

4. Hamiltonian

In this section we shall write the MPT Hamiltonian in the su(1, 1) space. We start by showing
that the operators K̂+ and K̂− can be explicitly expressed in terms of the coordinate u and the
momentum p̂ = −ih̄ d/dx. From (22a) and (22b) we can readily write the explicit form of
the momentum and the coordinate u in terms of the su(1, 1) generators

p̂ = ih̄α

2

[
K̂+

√
1

(n̂ + σ − 1/2)(n̂ + σ + 1/2)
(n̂ + σ)

− K̂−

√
1

(n̂ + σ − 1/2)(n̂ + σ − 3/2)
(n̂ + σ − 1)

]
(35a)

u = 1

2

[
K̂+

√
1

(n̂ + σ − 1/2)(n̂ + σ + 1/2)
+ K̂−

√
1

(n̂ + σ − 1/2)(n̂ + σ − 3/2)

]
. (35b)

These expressions can be rewritten in a more symmetrical form introducing the operators

Â± = 1√
K̂0

K̂±
1√
K̂0

(36a)

B̂± =
√

K̂0 ∓ 1
2 Â±

√
K̂0 ± 1

2 . (36b)
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In terms of these new operators

p̂ = ih̄α

2
[B̂+ − B̂−] (37a)

u = 1

2
[Â+ + Â−]. (37b)

On the other hand, since the potential (1) can be rewritten as V (u) = −D(1 − u2), the
MPT Hamiltonian can be expressed in the form

Ĥ = p̂2

2µ
− D

cosh2(αx)
= p̂2

2µ
− h̄2α2

2µ
j(j + 1)(1 − u2). (38)

Carrying out the substitutions of (37) into (38), we obtain

Ĥ = −h̄2α2

8µ
[4j (j + 1) + (B̂− − B̂+)

2 − j (j + 1)(Â+ + Â−)2]. (39)

The matrix elements of Ĥ can be easily calculated with the relations

Â+�
σ
n (u) =

√
(n + 1)(2σ + n − 1)

(n + σ − 1/2)(n + σ + 1/2)
�σ

n+1(u)

Â−�σ
n (u) =

√
n(2σ + n − 2)

(n + σ − 1/2)(n + σ − 3/2)
�σ

n−1(u)

(40)
B̂+�

σ
n (u) = (σ + n)Â+�

σ
n (u)

B̂−�σ
n (u) = (σ + n − 1)Â−�σ

n (u)

and are given by

〈
�σ

n

∣∣Ĥ ∣∣�σ
n

〉 = h̄2α2

8µ

{
n(2σ + n − 2)

(n + σ − 1/2)(n + σ − 3/2)
[j (j + 1) + (n + σ − 1)2]

+
(n + 1)(2σ + n − 1)

(n + σ − 1/2)(n + σ + 1/2)
[j (j + 1) + (n + σ)2] − 4j (j + 1)

}
(41a)

〈
�σ

n+2

∣∣Ĥ ∣∣�σ
n

〉 = h̄2α2

8µ

1

(n + σ + 1/2)

√
(n + 1)(n + 2)(2σ + n − 1)(2σ + n)

(n + σ − 1/2)(n + σ + 3/2)

× [j (j + 1) − (σ + n)(σ + n + 1)] (41b)

〈
�σ

n−2

∣∣Ĥ ∣∣�σ
n

〉 = h̄2α2

8µ

1

(n + σ − 3/2)

√
n(n − 1)(2σ + n − 2)(2σ + n − 3)

(n + σ − 1/2)(n + σ − 5/2)

× [j (j + 1) − (σ + n − 1)(σ + n − 2)]. (41c)

Since the non-diagonal matrix elements depend on the parameter σ , we look for an adequate
choice of this parameter which allows us to decouple the bound states from the continuum,
similar to the case of the Morse potential [38]. The form of the Hamiltonian matrix, however,
makes clear that this is not possible; only one parameter is available and two matrix elements
are to vanish.
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The symmetry of the potential implies that the parity is conserved and consequently the
space Lσ can be reduced into even and odd subspaces

Lσ = Le
σ ⊕ Lo

σ . (42)

The diagonalization of the Hamiltonian matrix reduces to the diagonalization of two tridiagonal
matrices, one associated with the even functions

∣∣�σ
2p

〉
and the other with the odd functions∣∣�σ

2p+1

〉
, where p is a non-negative integer. Although it is not possible to find a value of σ

to decouple the continuum states from the bound states in both spaces simultaneously, one
can find a value of σe which decouples even parity states, and a different value of σo which
decouples odd parity states. Explicitly, if we choose σo = j−(2p+1), then the state n = 2p+1
will not couple to the next odd state, and so the states n = 1, 3, . . . , 2p + 1 decouple from the
rest. If we take σe = j −2p, then the state with n = 2p does not couple to the next even state,
and so the states with n = 0, 2, . . . , 2p decouple from the rest. Thus, we see that, by choosing
the value of σ > 0 so that σ + n = j , where n is an even or odd non-negative integer there is
a set of even or odd states which decouple from the rest of the basis. The eigenstates of the
Hamiltonian in this restricted basis should indeed be bound eigenstates of the Hamiltonian in
the complete Hilbert space.

If we take the lowest possible value of σ satisfying σ + n = j , we maximize the number
of states which decouple from the rest. Taking into account the maximum value of v for the
bound states (8), we obtain the following conditions on σ in order to obtain the decoupling:

Case (a) : [j ] even σe = j − [j ] and σo = j − [j ] + 1.

Case(b) : [j ] odd σe = j − [j ] + 1 and σo = j − [j ]. (43)

If j is fixed there are [j ] + 1 bound states �
j
v (u), characterized by the values of v =

0, 1, . . . , [j ]. The parity of v determines the parity of the state. If the values of σ are
chosen as σe or σo, the exact bound states (2) satisfy the following orthogonality condition〈

�j
v

∣∣�σ
n

〉 = 0 ∀n > [j ]. (44)

In the next section we shall prove the orthogonality relations (44). However, one can justify it
from the following argument. Let us assume that [j ] is even. Then, the MPT Hamiltonian has
[j ]/2 + 1 bound eigenstates with even parity and [j ]/2 states with odd parity, which are the
only normalizable states of the MPT Hamiltonian in the complete Hilbert space. By taking
σe = j − [j ], we get that the states characterized by n = 0, 2, . . . , [j ] decouple from the
rest, and so the eigenstates of the Hamiltonian in this basis should also be eigenstates of the
Hamiltonian in the complete space. But these eigenstates are [j ]/2 + 1, and are normalizable.
So, they should be the even parity eigenstates of the Hamiltonian. Hence, the states with
n > [j ], which are orthogonal to the states with n � [j ], must also be orthogonal to the bound
states with positive parity. The same argument can be applied for the odd parity states. When
[j ] is odd, we will get ([j ] + 1)/2 odd parity states and ([j ] + 1)/2 even parity states, but the
argument is essentially the same.

As an example, we present in figure 2 the eigenstates obtained for the MPT Hamiltonian
with j = 4 as the dimension of the basis is enlarged from 4 to 20. Here we have selected
σ = 1, in this case the bound odd parity states are decoupled from the rest. The inset is a zoom
of the low energy part, it is seen that the states n = 1 and n = 3 have the exact energy in all
the cases as expected. The energies of the states with n = 0 and n = 2 are not the exact ones
in principle, but the overlaps with the exact states are large with a small basis. For example,
in the case of a basis with N = 6 (3 even and 3 odd states) the overlaps of those states with
the exact ones are 99.998% and 98.833% respectively. Energies are given in units of h̄2α2/µ.
It is seen that when adding one state to the basis the states of the other parity remain of the
same energy, since the parity is a good quantum number here.
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Figure 2. Energy eigenvalues (dimensionless, in units of h̄2α2/µ), for the Pöschl–Teller potential
with j = 4 as a function of the size of the basis N generated for σ = 1. The inset is a zoom of the
low energy region.

5. Interpretation of the basis Φσ
n(u)

In order to interpret the family of orthonormal functions (16) we need to introduce the raising
and lowering operators in the framework of the potential group approach [42]. We thus look
for operators that shift the number of quanta as well as the potential parameter j .

Applying the operator (1 − u2) d
du

to (2), and using relation (20), we obtain

(1 − u2)
d

du
�j

v (u) = u(j + 1)�j
v (u) − (v + 1)

N
j
v

N
j+1
v+1

�
j+1
v+1 (u) (45)

where we have introduced the identification

�
j+1
v+1 (u) = N

j+1
v+1 (1 − u2)

j−v

2 C
j−v+1/2
v+1 (u). (46)

So, the state �
j+1
v+1 (u) is the bound eigenstates with v + 1 quanta of a MPT potential whose

depth is characterized by j + 1.
At this point we introduce the operators

M̂±(q) = ∓(1 − u2)
d

du
+ qu (47)

which have the remarkable property that can be expressed in terms of a linear combination of
operators M̂±(q ′) with different arguments

M̂±(q) = q + q ′′

q ′ + q ′′ M̂±(q ′) +
q − q ′

q ′ + q ′′ M̂∓(q ′′). (48)

We note that the raising or lowering operators with different arguments do not commute. In
particular, we shall be interested in the commutation relation

[M̂+(q), M̂+(q
′)] = (q ′ − q)(1 − u2). (49)

Taking into account the appropriate recurrence relations for the Geguenbauer polynomials,
we obtain without difficulty the action of the operators (47) for particular values of q on the
wavefunctions



An su(1, 1) dynamical algebra for the Pöschl–Teller potential 887

M̂−(j)�j
v (u) =

√
v(2j − v)�

j−1
v−1 (u) (50a)

M̂+(j + 1)�j
v (u) =

√
(v + 1)(2j − v + 1)�

j+1
v+1 (u). (50b)

On the other hand, comparing the operators (47) with K̂± given by (22a), (22b), we note that
they differ by a normalization factor only, a fact that allows us to obtain the action of the
operators M̂± on the basis (16):

M̂−(σ + n)�σ
n (u) =

√
n(σ + n − 1/2)(2σ + n − 2)

(σ + n − 3/2)
�σ

n−1(u) (51a)

M̂+(σ + n − 1)�σ
n (u) =

√
(n + 1)(σ + n − 1/2)(2σ + n − 1)

(σ + n + 1/2)
�σ

n+1(u). (51b)

Consequently, the action of the generalized operators M̂±(q) on both the bound MPT
wavefunctions (2) and the basis functions (16) is known.

From the definition of M̂+(q) we can write the MPT wavefunctions in terms of successive
application of appropriate M̂+ operators over �

j−v

0 (u),

∣∣�j
v

〉 = Dj
v

v∏
β=1

M̂+(j − v + β)
∣∣�j−v

0

〉
(52)

where

Dj
v =

√
1

v! (2j − 2v + 1)v
. (53)

In addition, from equations (2) and (16), the following relation is obtained,∣∣�j−v

0

〉 = C(j, v, σ )(1 − u2)
j−v−σ

2
∣∣�σ

0

〉
(54)

where

C(j, v, σ ) = N
j−v

0

Aσ
0

. (55)

Taking into account the possible values of σ given in (43), we find that j − v − σ is a non-
negative integer corresponding to the number of bound states higher in energy than

∣∣�j
v

〉
with

the same parity of v. The substitution of (54) into (52), using (49), gives rise to the expression

∣∣�j
v

〉 = E(j, v)


 v∏

β=1

M̂+(j − v + β)


 [M̂+(σ ), M̂+(σ − 1)]

j−v−σ

2
∣∣�σ

0

〉
(56)

where

E(j, v) = C(j, v, σ )Dj
v . (57)

It can be seen that this expression contains at maximum a number of M̂+ operators
corresponding to the total number of bound states, which is equal to [j ] or [j ] − 1, depending
on the parity of v.

In the same way, from equations (51) we can write the basis wavefunctions �σ
n (u) in

terms of successive applications of M̂+ over �σ
0 (u),

∣∣�σ
n

〉 = Bσ
n

n∏
β=1

M̂+(σ − 2 + β)
∣∣�σ

0

〉
. (58)
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We next come back to the selection rule (44), but now from the point of view of the
new operators (47). The expansion of the commutator in (56) generates a sum of products
of operators M̂+ with j − v − σ factors. If we add the effect of the v operators indicated in
parentheses in (56), a linear combination of products of operators M̂+ with a number of factors
corresponding to [j ] or [j ] + 1, depending on the parity of v, is generated. The effect over the
state

∣∣�σ
0

〉
of each sequence of [j ] ( or [j ] − 1 ) products of operators M̂+(q) is obtained by

using (48), in such a way that selecting appropriately the arguments q ′ and q ′′ they increase or
decrease the index ζ in the basis

∣∣�σ
ζ

〉
. As a result the eigenfunctions

∣∣�j
v

〉
are given in terms

of a linear combination of functions
∣∣�σ

ζ

〉
with ζ = 0, 1, . . . , [j ] or [j ] − 1. Finally, because

of the property (17), the orthogonality (44) is satisfied.
We next show the relation of the present approach to the potential approach and the

supersymmetric quantum mechanics treatment. Comparing the forms of the bound MPT
wavefunctions (2) and the family of orthonormal functions (16) and using the known relation
for the Gegenbauer polynomials

(n + α)Cα−1
n+1 (x) = (α − 1)

(
Cα

n+1(x) − Cα
n−1(x)

)
(59)

it is obtained rightaway that∣∣�σ
n

〉 = Sσ
n

[√
(2σ + n)(2σ + n − 1)

∣∣�σ+n
n

〉 − √
n(n − 1)

∣∣�σ+n−2
n−2

〉]
(60)

with

Sσ
n = 1

2
√

σ(n + σ − 1/2)
. (61)

The family of functions �σ
n (u) are then a linear combination of MPT-like functions with

potential parameters σ +n and σ +n−2. This result explains the resemblance of the operators
(47) with the operators obtained in the potential approach. The functions (16) turn out to be
MPT-like functions associated with different potential depths.

Concerning the supersymmetric quantum mechanics approach, we should note that the
MPT Hamiltonian can be factorized in the form

Ĥ = h̄2α2

2µ
[M̂+(j)M̂−(j) − j 2] (62)

an expression which is derived from supersymmetric quantum mechanics [5]. The matrix
elements of this operator in the basis

∣∣�σ
n

〉
are obtained by means of the transformations (48)

which, when applied to (62), lead to the matrix elements (41). The connection of the operators
M̂± with the factorization (62) is a consequence of the relation between the factorization
method and the concept of shape invariant potentials discussed in supersymmetric quantum
mechanics [43].

6. Dipole function

Once the Hamiltonian has been diagonalized we obtain the energy spectrum as well as the
eigenfunctions. The quality of the energies is estimated by the calculation of the root mean
square deviation. In general, however, a good description of the energy spectrum is not
necessarily accompanied by high quality of the eigenstates. It is thus compulsory to evaluate
the goodness of the eigenfunctions through the calculation of other observables. One of the
most important observables is the dipole transition intensity. We shall thus present a discussion
of matrix elements of the dipole operator.

Since in general the form of the dipole function is not known, it is common to express the
dipole function as a Taylor series expansion around the equilibrium positions. This expansion
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must take into account the symmetry properties of the system. For a one-dimensional system
the dipole function carries the odd irreducible representation. Since the natural variable for
the Pöschl–Teller potential is u = tanh(αx), we propose the expansion

µ(x) =
P∑

p=0

u2p+1

(2p + 1)!

(
d2p+1µ

du2p+1

)
e

(63)

where we have considered a finite sum and have taken into account the odd character of both
the dipole function and the variable u.

We thus intend to obtain the matrix elements

µmn = 〈
�σ

m

∣∣µ̂(x)
∣∣�σ

n

〉
(64)

which implies the calculation of the matrix elements

M2p+1
mn = 〈

�σ
m

∣∣û2p+1
∣∣�σ

n

〉
. (65)

The matrix elements (65) can be obtained by means of recurrence relations. The seeds for
such relations are the matrix elements

〈
�σ

n+1

∣∣u∣∣�σ
n

〉 = 1

2

√
(n + 1)(2σ + n − 1)

(σ + n − 1/2)(σ + n + 1/2)
(66a)

〈
�σ

n−1

∣∣u∣∣�σ
n

〉 = 1

2

√
n(2σ + n − 2)

(σ + n − 1/2)(σ + n − 3/2)
. (66b)

Introducing the closure relation∑
β

∣∣�σ
β

〉〈
�σ

β

∣∣ = 1 (67)

the matrix elements (65) can be rewritten as〈
�σ

m

∣∣u2p+1
∣∣�σ

n

〉 =
∑

β

〈
�σ

m

∣∣u2p−1
∣∣�σ

β

〉〈
�σ

β

∣∣u2
∣∣�σ

n

〉
p = 1, 2, . . . (68)

where 〈
�σ

β

∣∣u2
∣∣�σ

n

〉 = 〈
�σ

β

∣∣u∣∣�σ
n+1

〉〈
�σ

n+1

∣∣u∣∣�σ
n

〉
+

〈
�σ

β

∣∣û∣∣�σ
n−1

〉〈
�σ

n−1

∣∣û∣∣�σ
n

〉
(69)

with β = n, n ± 2. Taking into account this result, expression (68) can be recast into the
explicit form〈
�σ

n±(2α+1)

∣∣û2p+1
∣∣�σ

n

〉 = 〈
�σ

n±(2α+1)

∣∣û2p−1
∣∣�σ

n

〉〈
�σ

n

∣∣û2
∣∣�σ

n

〉
+

〈
�σ

n±(2α+1)

∣∣û2p−1
∣∣�σ

n+2

〉〈
�σ

n+2

∣∣û2
∣∣�σ

n

〉
+

〈
�σ

n±(2α+1)

∣∣û2p−1
∣∣�σ

n−2

〉〈
�σ

n−2

∣∣û2
∣∣�σ

n

〉
(70)

where the matrix elements involving odd powers of u satisfy〈
�σ

n±(2α+1)

∣∣u2p−1
∣∣�σ

n+γ

〉 �= 0 if |±(2α + 1) − γ | � 2p + 1 (71)

for γ = 0,±2. Starting with the matrix elements (66) we can generate the matrix elements of
any (odd) power of u using (70) and consequently the dipole matrix elements (63).

As an illustration of the results that can be obtained we have done a simple calculation
using a dipole operator function

µ̂(x) = u(1 − u2) (72)
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Figure 3. Transition strength to all states (left panels) and probability density for transitions to
the continuum (right panels) from the ground state (a), from an average with equal weights of all
bound states (b) and from the least bound state (c). The diagonal terms are also included. The
dipole operator used is given in equation (72). The calculation is done with a basis generated for
σ = 1 of N = 20 states for a Pöschl–Teller potential with j = 4. The probability density to the
continuum is represented as a histogram as explained in the text.

where u = tanh(x). We use dimensionless magnitudes in such a way that energies are given
in units of h̄2α2/µ and distances are given in units of α−1. The calculations presented are for
a MPT Hamiltonian with j = 4 and with the election σ = 1. We calculate from the bound
states the transition strength (S) and the energy weighted transition strength (EW) defined
as S(µ̂; n,m;N) = |〈N,m|µ̂|N, n〉|2 and EW(µ̂; n,m;N) = (

eN
n − eN

m

)∣∣〈N,m|µ̂|N, n〉|2,
where eN

n is the energy of the state n in a basis of N functions. In figure 3 we present
the strengths for a calculation with a basis with N = 20 states. Left panels give transition
strengths starting from different initial state: in the upper panel the initial state is the ground
state (n = 0), in the middle panel the initial state is an average with the same weight of all
bound states and in the lower panel the initial state is the least bound state (n = 3). Right
panels are the corresponding probability densities for transitions to the continuum. Since our
basis is discrete we have distributed the strength to each state Ei in the continuum in an energy
interval �Ei = [(Ei + Ei−1)/2, (Ei + Ei+1)/2] and we represent it as a histogram. Due to
parity the strength from the state n = 0 goes only to odd parity states in the continuum, while
the strength from n = 3 goes only to even parity states. This selection rule does not apply
to the middle panel since the initial state is an average including both even and odd parity
bound states. It can be seen that the maximum of the distribution moves up in energy as the
initial state is less bound and that the total strength to the continuum is larger also when the
initial state is less tightly bound. In table 1 we investigate the convergence of the total strength
and the energy weighted sum rule from the initial state n to the continuum as a function of the
number of basis states included. Both of these magnitudes can be calculated exactly and, in
our case, are S(µ̂; n,N) = ∑N−1

i=4 S(µ̂; n, i;N) and EW(µ̂; n;N) = ∑N−1
i=4 EW(µ̂; n, i;N)

respectively. In table 1 we present the results for two different initial states: the ground state



An su(1, 1) dynamical algebra for the Pöschl–Teller potential 891

Table 1. Convergence of the total strength (S) and energy weighted sum rule (EW ) to the continuum
for the operator µ̂ = u(1 − u2) as a function of the discrete basis dimension generated for σ = 1
for the Pöschl–Teller Hamiltonian with j = 4. Two cases are presented: one with the ground state
as initial and the other with the least bound state as initial. N is the total number of basis states.

n = 0 n = 3

N S(µ̂, N) EW (µ̂,N) S(µ̂, N) EW (µ̂, N)

6 0.004 8805 0.052 369 0.005 2729 0.006 0102
8 0.005 0430 0.057 189 0.015 603 0.085 813

10 0.005 0263 0.056 859 0.015 407 0.086 213
20 0.005 0239 0.056 850 0.015 306 0.086 415

Exact value 0.005 0239 0.056 850 0.015 301 0.086 424

(n = 0) and the least bound state (n = 3). Table 1 shows that for the case starting in the
ground state the convergence is fast and already with N = 20 (8 even and 8 odd states in the
continuum plus the 4 bound states) the exact values for both the total strength and the energy
weighted sum rule are obtained. For the least favourable case starting in n = 3 a basis of
N = 20 states provides an extremely good approximation to the exact values.

We have investigated the one-dimensional case, for which the dipole function has a
definite parity. In three-dimensional problems, however, the dipole function is a vector whose
components may carry several irreducible representations. As a consequence, even powers of
the variable u may be involved. Let us consider an example. Formaldehyde (CH2O) is a planar
molecule with one mode out-of-plane. In a local mode description a possible set of internal
coordinates to be chosen is the two distances CH (r1, r2) , the distance CO (r3) and the two
angles � HCO (θ1, θ2). Finally, from the dihedral angle γ between the normal of the planes
defined by the two sets of HCO atoms, the out-of-plane bending angle coordinate δ = γ − π

is defined. The dipole function carries the irreducible representations B1, B2 and A1, for the x,
y and z components, respectively. Choosing the molecule in the xz plane, the dihedral angle
spans the B2 representation. The dipole function may thus be expanded in terms of this set of
internal coordinates, but a better alternative is represented by symmetry adapted coordinates.
If we define the coordinates

SA1
s = 1√

2
(r1 + r2) (73a)

SA2
s = 1√

2
(r1 − r2) (73b)

QA1
s = r3 (73c)

S
A1
b = 1√

2
(θ1 + θ2) (73d )

S
A2
b = 1√

2
(θ1 − θ2) (73e)

SB2
o = u (73f )

where u = tanh(αδ) and s, b stand for stretching and bending, respectively. The components
of the dipole moment are represented as [44]

µ�
α =

∑
ijklmn

µ
�,α
ijklmn

(
SA1

s

)i(
SA2

s

)j (
QA1

s

)k(
S

A1
b

)l(
S

A2
b

)m(
SB2

o

)n
(74)
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where � = B1, B2, A1 and α = x, y, z, respectively, while the coefficients µ
�,α
ijklmn are related

to the derivatives of the dipole evaluated in the equilibrium. In (74) the allowed powers in the
sum are restricted to satisfy

� = (A1)
i ⊗ (A2)

j ⊗ (A1)
k ⊗ (A1)

l ⊗ (A2)
m ⊗ (B2)

n. (75)

For terms in the expansion (74) with i = j = k = l = m = 0, the non-vanishing coefficients
are

µ
A1,z
00000n �= 0 n even (76)

µ
B2,y

00000n �= 0 n odd (77)

as expected from (75). We thus have to obtain a recurrence relation to generate the matrix
element with even powers of u. Such a relation can be obtained in a straightforward way and
is given by〈
�σ

m

∣∣u2p
∣∣�σ

n

〉 = 〈
�σ

m

∣∣u2p−1
∣∣�σ

n+1

〉〈
�σ

n+1

∣∣u∣∣�σ
n

〉
+

〈
�σ

m

∣∣û2p−1
∣∣�σ

n−1

〉〈
�σ

n−1

∣∣û∣∣�σ
n

〉
. (78)

We can thus obtain the matrix elements with even powers of u in terms of the matrix elements
previously generated for the odd powers.

7. Summary and conclusions

In this work we have proposed a complete set of functions to describe both the bound and
continuum parts of the spectrum for the MPT potential. We have shown that the ladder
operators for this set of functions satisfy the su(1, 1) commutation relations, a fact that leads
us to consider the su(1, 1) algebra as a dynamical algebra of the MPT. This analysis allows us
to approach the description in terms of an algebraic formalism, which considerably simplifies
the calculations. A remarkable result of this analysis is that it is possible to decouple the bound
states from the continuum either for the even or the odd parity states. For the parity where the
decoupling is not carried out, the exact bound eigenvalues are recovered with a relatively small
basis. The potential approach is used to interpret the basis (16), which turns out to be linear
combinations of MPT-like functions with different potential depths. Recurrence relations for
the calculation of the dipole matrix elements are established.

In a local mode description for molecular vibrational excitations the MPT potential is
suitable to describe the out-of-plane modes. With the advent of new spectroscopic techniques
[45–47], excitations with a high number of quanta in the out-of-plane modes can be obtained.
When the excitation energies are near the dissociation barrier, the continuum may play a
preponderant role, and consequently should not be neglected. We believe that the model we
propose will be useful to deal with these situations.
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